书名:《机器学习》
索书号:TP181/157
作者:(希) 西格尔斯·西奥多里蒂斯
出版社:机械工业出版社
出版时间:2022年01月
内容简介:
本书对所有重要的机器学习方法和新近研究趋势进行了深入探索,新版重写了关于神经网络和深度学习的章节,并扩展了关于贝叶斯学习的内容。书中首先讨论基础知识,包括均方、最小二乘和最大似然方法,以及岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍较新的技术,包括稀疏建模方法、再生核希尔伯特空间和支持向量机中的学习、关注EM算法的贝叶斯推理及其变分近似推理、蒙特卡罗方法、关注贝叶斯网络的概率图模型、隐马尔可夫模型和粒子滤波。此外,书中还讨论了降维、隐变量建模、统计参数估计、维纳和卡尔曼滤波、凸优化等技术。
Copyright ©2024 山东轻工职业学院图书馆 All Rights Reserved 地址:山东省淄博市周村区米山路30号